Acta Crystallographica Section E

Structure Reports

Online

2'-(4-Dimethylaminobenzylidene)pyrazine-2-carbohydrazide

ISSN 1600-5368

Xue-Fang Shi* and Cui-Cui Yuan

Department of Chemical and Biology, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: xuefangshi@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.133$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$, was synthesized by the reaction of pyrazine-2-carboxylic acid hydrazide with 4dimethylaminobenzaldehyde in methanol. In the crystal structure, there are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Weak $\pi-\pi$ interactions link the molecules into a three-dimensional network.

Comment

Hydrazonecarbonyl compounds have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). The type of pyrazine derivative reported here has wide application in the treatment of tuberculosis and also exhibits fungicidal activity (Edwards et al., 1975; Kushner et al., 1952). A series of similar pyrazinylcarboxylic acid-hydrazone complexes has been reported previously (Gardner et al., 1956). Here, we report the structure of the title compound, (I).

(I)

Excluding methyl H atoms, the molecule is almost planar, with a dihedral angle of $8.32(3)^{\circ}$ between the pyrazine and benzene rings. The molecules are held together by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1)

The molecules are stacked in an antiparallel fashion, with a pyrazine-to-benzene ring centroid-centroid separation of $3.676 \AA$ and a pyrazine-to-pyrazine ring separation of $4.013 \AA$, indicating the presence of face-to-face $\pi-\pi$ stacking interactions (Fig. 3).

Experimental

A mixture of pyrazine-2-carboxylic acid hydrazide ($0.01 \mathrm{~mol}, 1.38 \mathrm{~g}$) and 4-dimethylaminobenzaldehyde ($0.01 \mathrm{~mol}, 1.49 \mathrm{~g}$) in methanol was refluxed for 2 h . The solid material obtained on cooling was filtered, washed with ethanol-diethyl ether (1:1), dried and crystallized from methanol (yield 88%, m.p. $526-528$ K). The compound $(1.0 \mathrm{mmol}, 0.268 \mathrm{~g})$ was dissolved in methanol (30 ml) and left to stand at room temperature for one week, after which yellow block-
\qquad

Figure 1
The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
shaped single crystals formed; these were collected and washed with diethyl ether for X-ray diffraction analysis.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O} & V=659.4(4) \AA^{3} \\
M_{r}=269.31 & Z=2 \\
\text { Triclinic, } P \overline{1} & D_{x}=1.356 \mathrm{Mg} \mathrm{~m}^{-3} \\
a=6.049(2) \AA & \text { Mo } K \alpha \text { radiation }^{\circ} \\
b=10.142(4) \AA & \mu=0.09 \mathrm{~mm}^{-1} \\
c=11.047(4) \AA & T=293(2) \mathrm{K} \\
\alpha=92.547(6)^{\circ} & \text { Block, yellow } \\
\beta=96.063(6)^{\circ} & 0.22 \times 0.20 \times 0.16 \mathrm{~mm}
\end{array}
$$

$$
\gamma=101.286(6)^{\circ}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.980, T_{\text {max }}=0.986$

Refinement

Refinement on F^{2} $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$ $w R\left(F^{2}\right)=0.133$
$S=1.00$
2318 reflections
184 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0693 P)^{2}\right. \\
& +0.0644 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.014 \text { (5) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	$2.44(1)$	$3.300(11)$	$155(1)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{ii}}$	0.93	$2.67(1)$	$3.486(6)$	$148(1)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+2,-z$.

All H atoms were initially located in a difference Fourier map. The H atoms were then constrained to an ideal geometry, with $\mathrm{N}-\mathrm{H}=$ $0.86 \AA, \mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{H}=0.96 \AA, \mathrm{C}($ phenyl $)-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 2
Intermolecular hydrogen bonds (dashed lines).

Figure 3
The packing of the title compound, viewed down the a axis.
SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Edwards, E. I., Epton, R. \& Marr, G. (1975). J. Organomet. Chem. 85, C23C25.
Gardner, T. S., Smith, F. A., Wenis, E. \& Lee, J. (1956). J. Org. Chem. 21, 530533.

Hadjoudis, E., Vittorakis, M. \& Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.
Kushner, S., Dalalian, H., Sanjurjo, J. L., Bach, F. L., Safir, S. R. Jr, Smith, V. K. \& Williams, J. H. J. Jr (1952). J. Am. Chem. Soc. 74, 3617-3621.
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

